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A statistical design criterion is applied to the problem of estimating dielectric constants in the model 
proposed by Havriliak and Negami. Under this criterion, the volume of the joint inference region of the 
parameter estimates is minimized. Because a computer program must be used to determine the optimal 
design points, simple approximating equations are presented for more practical use. 
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INTRODUCTION 

Havriliak and Negam? proposed a model for the 
dielectric behaviour of polymers in the form 

E*(f)=e~ + (e0-eo~)[1 + (i~on f )~ ] -~  (1) 

where e*(f) is the complex dielectric constant measured 
at oscillator frequency f (Hz), e~ and e 0 are the 
instantaneous and equilibrium dielectric constants, 
respectively, i = ( - 1 )  1/2, and fo is the relaxation 
frequency. For different values of ~ and fl, the model (1) 
includes other dispersion models. For example, when 
fl = 1 the Cole-Cole 2 expression is obtained, and when 
~= 1, the Cole-Davidson 3 expression is obtained. 

GraphicaP methods have been used to estimate the 
unknown parameters in (1), but more recently, 
multiresponse statistical methods have been applied by 
Havriliak and Watts 5 to obtain objective parameter 
estimates and to provide measures of precision for the 
estimates. To generate data which provide parameter 
estimates with the best precision, optimal statistical 
designs should be used. 

D-OPTIMAL DESIGNS 

An important measure of the precision of parameter 
estimates is the volume of the joint inference region for the 
parameters. If the experiment is designed so that this 
volume is minimized when generating the data, then the 
experimental design is called D-optimal. Draper and 
Hunter 6-8 formulated a general D-optimal criterion for 
the situation where there are multiple responses and the 
responses are nonlinear in the parameters. 

Suppose there are M responses measured at N 
experimental settings, with P parameters and K variables 
involved in the model. Using a first-order Taylor series 
expansion with respect to the parameters, the volume of 
the approximate joint inference region is proportional to 
the square root of the reciprocal of det(XT(Z-l®l)X), 
where Xr= (X~ . . . . .  X~) and the element of the nth row 
and the pth column of X~, (Xm),r is the derivative of the 

mth response with respect to the pth parameter evaluated 
at the nth case. I is an N x N identity matrix and ® is the 
direct product operator. The variance-covariance 
matrix, E, of the distrubances infecting the responses on a 
particular case is assumed known. Note that the design 
depends on the unknown parameters through the 
derivative matrices, X~, and on the terms in the variance- 
covariance matrix, E, so that preliminary estimates for 
the parameters and the covariance terms must be 
supplied. If the model is conditionally linear in some 
parameters, then it can be shown that the D-optimal 
criterion is independent of these conditionally linear 
parameters 9. 

For the dielectric model, there are M = 2 responses (the 
real and imaginary parts), P = 5 parameters (eo, e~, ~, fl 
and fo) and K = 1 design variable (the frequency f) .  Also, 
the parameters e o and e~o are conditionally linear. Because 
there are only two responses, the criterion reduces to 
maximizing 

D ( f ) =  det(XxX) (2) 

with respect to f = (fl ,f2 . . . . .  fN) T. In (2), 

x~-~-x~ 
X= (1 --t0) 1/2 

2 is the ratio of the standard deviation of the imaginary 
part to that of the real part, p is the correlation between 
the noises infecting the two responses, and Xr and Xi are, 
respectively, the derivative matrices with respect to the 
parameters of the real and the imaginary parts. Thus the 
design depends on the parameters ~, fl and fo, and on the 
covariance terms 2 and p. Havriliak and Watts 5 found 
that usually 2 >/3 and p was small ( -0 .2  < p < 0.2), and 
that 0.5<~t<0.9, 0 .3<f l<0.7  and 8 0 < f 0 <  15000. The 
information about p and 2 is particularly valuable for 
experimental design purposes. 
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Figure 1 Plot of standardized optimum design frequency f2*. Curves 
are smoothed by spline 

RESULTS 

For the uniresponse case with P parameters, it has been 
shown *° that optimal designs with N runs consist of 
replications of the optimal points required for a P-point 
/design. Accordingly, we consider optimal designs with N 
equal to a multiple of five runs, where the five runs are 
determined using a generalized Gauss-Newton 
method ~*. Ideally, the oscillator frequency would extend 
from 0 to ~ ,  but in practice, 5~<f~<500000 is a 
reasonable range 5. In the following, we consider the ideal 
situation and the practical situation separately. 

Ideal situation: 0< f <  oo 
As might be expected, two of the design points should 

be at the lowest and the highest possible frequencies, so 
that if we denote the optimal design frequencies by 
~ = ( ~ ,  J~,^f3, ~ ,  ]~)T with fl<~f2<~fa<~f,,<~fs, then 
f ,  = 0 and fs = 00. Furthermore, given ~, fl, 2 and p, the 
points in any two designs corresponding to different true 
relaxation frequencies fo ~ and fo 2 satisfy 

fil ~2 
~ol =~o2 (i=2, 3, 4) (3) 

where the superscripts refer to the two designs and the 
subscript refers to the ith design point. It is therefore 
convenient to determine the optimum design frequencies 
f~* for the standardized relaxation frequency fo* = 2~ and 
then compute the optimum design frequencies ~ at 
a different relaxation frequency, say fo, as 

For conditions which occur in practice 5 
( -  0.2<~p ~< 0.2, and 3~<2), it was found that, for given 
and fl, all the designs can be well approximated by those 
with 2 = ~ ,  which corresponds to the situation when only 
the real part of the response is measured. If, further, 
Ipl < 0 . 1 ,  the approximation is valid for 2~<2. 

Plots of the standardized optimum design frequencies 
f* ,  fa*, fa* for the range of 0t and fl values used are given 
in Figures 1-3. The frequency curves are smooth and 
monotone, and could be used to obtain actual design 
frequencies using the relation (4). For 2 ~< 1, the design 
frequencies are no longer monotone in ~ and fl, and when 
2 ~< 0.3, it is impossible to estimate both e o and eoo, and so 
the model cannot be fitted. 

These results are informative, but they are not of 
practical use since they were derived under the 
assumption of ideal conditions, i.e. 0 < f < ~ .  To provide 
more useful designs, we incorporate bounds on the 
frequencies which can be applied. 

Practical situation: 5 <<. f <<. 500 000 
Under the practical restriction 5~<f~<500000, the 

designs remain insensitive to 2 and p when 2 ~> 3, so we use 
designs with 2 = oo to approximate those for finite 2. As 
before, f l  should be as low as pos~ble with f5 as high as 
possible. We thus set f l  = 5 and f~ = 500 000. However, 
the simple proportional relation (3) no longer pertains 
because of the frequency bounds, and so it is not possible 
to use the standard relaxation frequency f*  = 2re and 
scale with the relation (4). Thus, for each specified set ~t, fl 
and fo, an optimization must be performed. This 
motivated us to search for a polynomial approximation 
to optimal designs suitable for 2 = ~ and - 0 .2<p < 0.2. 

Exact optimal design frequencies for 2 = oo, 
ln(fo/2r0=2.5, 3.0 . . . . .  7.5, ~t=0.1, 0.2 . . . . .  1.0 and 
fl=0.1, 0.2 . . . . .  1.0 were obtained and polynomial 
models were fitted, by least squares, to each optimal 
frequency as a function of ~, fl and fo- To a good 
approximation, the design frequencies are 

f =5 

In ~ = In (fo/2r Q + 6.45 - 10.20 ~ - 0.64 fl - 1.68 ln(fo/2rQ 

+ 4.75 ct 2 + 0.04 [ln(fo/2n)] 2 + 2.11 ct ln(fo/2~ ) 

- -  0 .86  0~ 2 ln(fo/2n) 
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Figure 2 Plot of standardized optimum design frequency f3*. Curves 
are smoothed by spline 
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Figure 3 Plot of standardized optimum design frequency f* .  Curves 
are smoothed by spline 
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Table 1 Exact and approximate optimal designs 

Frequency 

fl  A A f4 A Determinant 

Polycarbonate 
Optimal  5 76 515 10130 500000 5.44 x 10-3 
Approximate 5 74 515 10749 500000 5.43 x 10 -3 

s-PMMA 
Optimal  5 95 1283 24556 500000 1.09 x 10 -4  
Approximate 5 96 1260 23491 500000 1.09 x 10 -4 

In )73 = ln(fo/2n) + 10.71 - 14.00 = - 1 .32/ / -  1.54 ln(fo/2n) 

+ 5.63 ct 2 + 0.43//2 + 0.02 [ln(fo/2~)] 2 

- 3.78 0t//+ 2.32 = ln(fo/2~) + 0.10//ln(fo/2rt) 

+ 3.16 fl=2 _ 1.13 at 2 ln(fo/2rt) 

In ~ = ln(fo/2~ ) + 13.43 - 8.43 ~ + 2 .94/ / -  1.57 ln(fo/2rt ) 

+ 1.46 ~2 _ 2.05//2 

- 18.12 at//+2.16 ct ln(fo/2r0 + 0.34 // ln(fo/2r 0 

+ 7.30 0t2//- 0.91 ct 2 ln(fo/2~) + 4.60 ct//2 

=500000 

The above expressions are not simple, but they are easy 
to compute, especially when compared to the calculations 
involved in maximizing a determinant. A typical relative 
error in a design frequency is less than 5 ~o: as c~,//and 
ln(fo/2r 0 approach the ends of the ranges, the error 
increases, but even in the worst case, is less than 20~o. 

Examples 
Havriliak and Watts 5 analysed dielectric data for 

polycarbonate and syndiotactic poly(methyl methacryl- 
ate) (s-PMMA), and found ~=0.77, //=0.29, fo=944 
and ~ = 0.53,/ /= 0.55, f0 = 2864, respectively. Using this 
information, we determined the exact and polynomial 
approximate optimal five-point designs as shown in Table 
1. The approximate design points are seen to be very close 
to the optimum design points and the determinants are 
essentially equal. 

COMPARISON OF DESIGNS 

In this section, we compare the efficiency of designs based 
on the polynomial approximations, and designs typically 
used in practice, with optimal designs. The efficiency of a 
design, say f, relative to the optimal design, J~ can be 
defined as the s~]uare root of the ratio of the design 
determinant, D(f), to the optimal design determinant, 
D(f). Then {D(f)/D(f)} t/2 gives the relative volume of 
the inference region for the optimal design to that of the 
design f. If the ratio is small, the design f is poor because 
the parameters will be estimated with less precision; if the 
ratio is large, then the design )7 is good because the 
parameters will be estimated with high precision. 

In a typical experimental study of dielectrics, 
frequencies are selected by specifying a series of values, 
say 2, 3, 5, 7, 10, 15, on a unit dial and then applying 
power to the bridge at multiples of 10 times these 
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frequencies. To allow comparison of a typical 
experimental design with a design consisting of replicated 
optimal points, we need to ensure that the typical design 
consists of a multiple of five runs. Table 2 gives such a 
design by letting a design of 5L runs consist of the first L 
columns. For the optimal designs and the polynomial 
approximation designs, we replicate L times at each of the 
five optimal design frequencies. In this case, the 
determinant of the 5L-run optimal (or polynomial 
approximation) design is LSD, where D is the determinant 
of the five-point design. Because the optimal and 
polynomial approximation designs are determined with 
2 = ~ ,  to allow comparability with the typical designs, we 
let 2 = 5 and p = 0 when calculating the determinants for 
the optimal and polynomial approximation designs. 

In Table 3, we show the percentage efficiencies of the 
polynomial approximate optimal designs and the typical 
designs. For 25 runs, efficiencies for the typical designs 
drop to about 50~o, while those for the polynomial 
approximations stay at 100 ~ .  With more observations, 
the efficiency of the typical design will become even worse. 

DISCUSSION 

Statistically designed experiments can be much more 
efficient than those planned otherwise. For this 
phenomenon, we have shown that typical designs, in 
which data are taken at roughly uniform spacing of 
frequency (on a logarithmic scale), are much less efficient 
than experiments in which replications are taken at 
statistically designed points. Experiments in which there 
are replications also provide vital information concerning 
the variances and covariances of the disturbances 
infecting the measurements, and so the optimal designs 
can be even more informative. For example, with even a 
modest number of replications, say three or four, it is 
possible to detect non-constant variance of the data and, 
using well established methods12, to determine 
appropriate variance-stabilizing transformations if 
necessary. 

We have also found that there is surprisingly little extra 
information gained about the parameters by measuring 
the imaginary part of the dielectric response. 

Table 2 A 'typical' design 

1 2 3 4 5 

5 10 15 20 30 
50 100 150 200 300 

500 1000 1500 2000 3000 
5000 10000 15 000 20000 30000 

100000 150000 200000 300000 
500000 

Table 3 Relative design efficiency (%) for 2 = 5 ,  p=O 

Polycarbonate s -PMMA 

L Approximate Typical Approximate Typical 

1 100 90 100 67 
2 100 74 100 70 
3 100 63 100 62 
4 100 57 100 60 
5 100 55 100 55 
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Experimenters interested solely in precise est imation of 
the parameters  in the Havr i l i ak -Negami  model  need 
therefore only measure the real component .  
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